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Introduction

• Root locus: tool of analysis and design for stability and 
transient response

• The root locus can be used to describe qualitatively the 
performance of various parameters which are changing.

The effect of varying gain upon percent overshoot, settling time, and 
peak time can be vividly displayed.

• Besides transient response, the root locus also gives a 
graphical representation of a system's stability.

Ranges of stability, ranges of instability, and  the conditions that cause a 
system to break into oscillation.



Defining the Root Locus

• A video camera system consists of the tracking system of a
dual sensor and a transmitter.

• Unbalance between the outputs of the two sensors
receiving data from the transmitter causes the system to
the balance out the difference and seek the source of
energy.

• Analysis and design using the effect of loop gain upon the
system's transient response and stability.

Figure 8.1 
a. Presenter Camera System automatically.    b. block diagram.     c. closed-loop transfer function.



Defining the Root Locus

• Representation of the closed-loop poles path as the gain K.

• The root locus gain K  represents a change in the transient 
response. 

Table 8.1
Pole location as a function of
gain for the system of Figure 8.4

Figure 8.2
a. Pole plot from Table 8.1;
b. root locus



Properties of the Root Locus

• Sketch of the root locus for higher-order systems without 
considering the denominator of the closed-loop transfer 
function.

• Open-loop transfer function

• Closed-loop transfer function

(8.1)

Figure 8.3
a. Example system;
b. pole-zero plot of G (s)
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Properties of the Root Locus

• Consider the point        . If this point is a closed-loop pole 
for some value of gain, then the angles of the zeros minus 
the angles of the poles must be an odd multiple of       from 
Fig. 8.7

• Gain, K

• The gain value apply to             
of Fig. 8.7 

• The point             is a point on the root locus for a gain of 
0.33.

(8.4)

(8.5) Figure 8.7
Vector representation of G(s) 
from Figure 8.6(a) at -2+ j 3
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SKETCHING THE ROOT LOCUS

v Once a sketch is obtained, it is possible to accurately plot 
just those points that are of interest to us for a particular 
problem.

v The following five rules allow us to sketch the root locus 
using minimal calculations.

1. Number of branches
• Each closed-loop pole moves as the gain K is varied.
• Define a branch as the path that one  pole traverses

• The number of branches of the root locus equals the number of closed-loop 
poles.

2. Symmetry
• If complex closed-loop poles do not exist in conjugate pairs, the resulting polynomial, 

formed by multiplying the factors containing the closed-loop poles, would have 
complex coefficients-not physically realizable.

• The root locus is symmetrical about the real axis.



SKETCHING THE ROOT LOCUS

3.   Real-axis segments
• The contribution to the angle at any of the points comes from open-loop, real-axis 

poles and zeros that exist to the RIGHT of the respective point

• On the real-axis, for         the root locus exists to the left of an 
odd number of real-axis, finite open-loop poles and/or finite 
open-loop zeros on the right.

Figure 8.5
Poles and zeros of a general open-loop
system with test points, Pi, on the real axis
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SKETCHING THE ROOT LOCUS

4.  Starting and ending points
• As K   approaches zero,  

• At high gains, where K is approaching infinity

• The root locus begins at the finite and infinite poles of                  
and ends at the finite and infinite zeros of           .
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Figure 8.6
Real-axis segments of the root locus 
for the system of Figure 8.3

Figure 8.7
Complete root locus for the system 
of Figure 8.3
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SKETCHING THE ROOT LOCUS

5.  Behavior at infinity

• Locate poles at infinity for functions containing more finite zeros than finite poles.

• The root locus approaches straight lines as  the locus approaches infinity.

• Equation of the asymptotes is given by the real-axis intercept,    and angle,    as 

follows:

the angle is given in radians with respect to the positive extension of the real axis

• Notice that the running index, k, in Eq. (8.9) yields a multiplicity of lines that account 

for the many branches of a root locus that approaches infinity.
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SKETCHING THE ROOT LOCUS

• Example 8.1

• Sketching the a root locus for the system shown in Figure 8.8

• Using Eq.(8.8), the real-axis intercept is evaluated as

(8.10)
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Figure 8.8
System for Example 8.1



SKETCHING THE ROOT LOCUS

• The angles of the lines that intersect at -4/3, given by Eq.(8.9)

• Figure 8.9 shows the complete root locus as well as the asymptotes that were just 
calculated
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Figure 8.9
Root locus and asymptotes 
for the system of Figure 8.8



REFINING THE SKETCH

• How to find accurately the points on the root locus and how 
to calculate the gain?

• Real - axis breakaway and break-in points
• the point where the locus leaves the real axis,

, is called the breakaway point.

• the point where the locus returns to the real axis,

, is called the break-in point.

• At the breakaway or break-in point, the branches
of the root locus form an angle of          with
the real axis, where    is the number of closed-loop
poles arriving at or departing from the single
breakaway or break-in point on the real axis
(Kuo, 1991). Figure 8.10

Root locus example showing 
real- axis breakaway (-s1) and
break-in points (s2)
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REFINING THE SKETCH

• The breakaway point occurs at a point of maximum gain

on the real axis between the open–loop poles.

• The gain at the break-in point is the minimum gain on the real axis 

between the two zeros.

• The sketch in Figure 8.11 shows the variation

of real-axis gain

• The breakaway point is found at the maximum

gain between -1 and -2

• the break-in point is found at the minimum gain

between +3 and +5

Figure 8.11
Variation of gain along the real axis for 
the root locus of Figure 8.10



REFINING THE SKETCH

• There are three methods for finding the points at which the root locus 
breaks away from and breaks into the real axis
• The first method is to maximize and minimize the gain, K, using differential calculus

- points along the real-axis segment of the root locus where breakaway and break-in

points could exist 

- equation then represents a curve of K versus      similar to that shown in Figure 8.11

- Hence, if we differentiate Eq. (8.13) with respect to    and set 
the derivative equal to zero, 

we can find the points of maximum/minimum gains and hence 
the breakaway and break-in points.
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REFINING THE SKETCH

• Example 8.2
• Find the breakaway and break-in points for the root locus of  Figure 8.10, using differential 

calculus.

• Using the open-loop poles and zeros, we represent the open-loop system whose root 

locus is shown in Figure 8.10 as follows:

But for all points along the root locus,                       , and along the real axis,         
Hence, 

Solving for K, we find
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REFINING THE SKETCH

Differentiating K with respect to         and setting the derivative equal to zero yields,

Solving for     , we find     =-1.45 and 3.82, which are the breakaway and break-in points.              
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REFINING THE SKETCH

• The second method is a variation on the differential calculus method: Transition Method

- Breakaway and break-in points satisfy the relationship

where      and     are the negative of the zero and pole

values, respectively, of              .

- Solving Eq. (8.18) for    , the real-axis values that 

minimize or maximize K, yields the breakaway and

break-in points without differentiating 

• The third method, the root locus program discussed in

appendix G.2 at   www.wiley.com/college/nise can be

used to find the breakaway and  break-in points

- MATLAB also has the capability of finding 

breakaway and break-in points

(8.18)1 1m m

I Ii iz ps s
=

+ +
å å

iz

( ) ( )G s H s

ip

s

Table 8.2
Data for breakaway and break-in points 
for the root locus of Figure 8.10



REFINING THE SKETCH

• Example 8.3

• Repeat Example 8.2 without differentiating

• Using Eq.(8.18),

Simplifying,

Hence,     =-1.45 and 3.82, which agrees with Example 8.2  

(8.19)
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REFINING THE SKETCH

• The     -Axis crossing
• The     -axis crossing is a point on the root locus that separates the 

stable operation of the system from the unstable operation.

• method of  find the     -axis crossing 

• Routh-Hurwitz criterion

- Forcing a row of zeros in the Routh table will yield the gain; going back one row to

the even polynomial equation and solving for the roots yields the frequency at the

imaginary-axis crossing.

• The fact that at the      -axis crossing, the sum of  angles from the finite open-loop 

poles and zeros must add to               .
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REFINING THE SKETCH

v Example 8.4
• For the system of  Figure 8.8, find the frequency and gain, K, for which 

the root locus crosses the imaginary axis. For what range of K is the 
system stable?
• The closed-loop transfer function for the system of Figure 8.8 is

Using the denominator and simplifying some of the entries by multiplying any row by  a
constant, we obtain the Routh array shown in Table 8.3                                      

4 3 2
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+ + + + +
(8.21)

Table 8.3
Routh table for Eq. (8.21)



REFINING THE SKETCH

a complete row of zeros yields the possibility for imaginary axis roots.   

From this equation K is evaluated as

Forming the even polynomial by using the     row with           , we obtain       

And s is found to be equal to            . Thus the root locus crosses the      -axis at  

at a gain of 9.65.  We conclude that the system is stable for       

2 65 720 0K K- - + = (8.22)

9.65K = (8.23)
2s 9.65K=

2 2(90 ) 21 80.35 202.7 0K s K s- + = + = (8.24)
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REFINING THE SKETCH

• Angles of departure and arrival 
• Root locus calculates  the departure angle and the arrival angle from/to 

the complex poles and zeros.

• The only unknown angle in the sum is 
the angle drawn from the pole that is

close

- The Figure 8.15  calculate  unknown
angle

or                         

Figure 8.15
Open-loop poles and zeros and
calculation of: angle of departure

Î
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(8.25a)

(8.25b)



REFINING THE SKETCH

• The only unknown angle in the sum is the
angle drawn from the zeros that is    close.

The Figure 8.16  calculates  unknown angle

Figure 8.16
Open-loop poles and zeros and
calculation of: angle of arrival

Î

1 2 3 4 5 6 (2 1)180kq q q q q q- + + - - + = + o

2 1 3 4 5 6 (2 1)180kq q q q q q= - + + - = + o
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(8.26b)



REFINING THE SKETCH

• Example 8.5
• Given the unity feedback system of Figure 8.14 find the angle of 

departure from the complex poles and sketch the root locus  

• Using the poles and zeros of                                           as plotted in Figure 8.15, we 
calculate the sum of angles drawn to a point    close to the complex pole,          , in the 
second quadrant. Thus,

Î
2( ) ( 2) / [( 3)( 2 2)]G s s s s s= + + + +

Figure 8.14
Unity feedback system 
with complex poles

1 1j- +



REFINING THE SKETCH

From which                              .  A sketch of the root locus is show in Figure 8.15. 
Notice how the departure angle from the complex poles helps us to refine the shape

0 0251.6 108.4q = - =

0 1 1 0
1 2 3 4 1

1 1
90 tan ( ) tan ( ) 180

1 2
q q q q q - -- - + - = - - + - =

Figure 8.15
Root locus for system of
Figure 8.14 showing angle
of departure

(8.27)



REFINING THE SKETCH

• Plotting and calibrating the root locus

Accurately locate points on the root

locus find their associated gain.

• Figure 8.18 shows the system’s open-loop
poles and zeros along with the   =0.45 line. 

• Selecting the point at radius 2(r=2) on the
=0.45 line,  add the angles of the zeros

and subtract the angles of the poles

The sum is not equal to an odd multiple of
, the point at radius =2 is not on the

root locus.

Figure 8.18
Finding and calibrating exact points on
the root locus of Figure 8.12
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REFINING THE SKETCH

• The table see that the point at radius 0.747 is on the root locus, since 
the angles add up to       . 

• Gain K
 180- o

1 . 7 1
A B C D

K
B

= =
(8.48)



TRANSIENT RESPONSE DESIGN VIA 
GAIN ADJUSTMENT

• Conditions of second-order system approximation
• Higher-order poles are much farther into the left half of the s-plane than 

the dominant second-order pair of poles.

• Closed-loop zeros near the closed-loop second-order pole pair are 
nearly canceled by the close proximity of higher-order closed-loop poles.

• Closed-loop zeros not canceled by the close proximity of higher-order 
closed-loop poles are far removed from the closed-loop poles.                                   

Figure 8.17
Making second-order
approximations



TRANSIENT RESPONSE DESIGN VIA 
GAIN ADJUSTMENT

• Summarizing the design procedure for higher-order system
• Sketch the root locus for the given system.  
• Assume the system is a second-order system without any zeros and then 

find the gain to meet the transient response specification.     
• Justify your second-order assumption by finding the location of all 

higher-order poles and evaluating the fact that they are much farther 
from the      than the times farther than the dominant second-order pair.

Verify that closed-loop zeros are approximately canceled by higher-order 
poles.        
If closed-loop zeros are not canceled by higher-order closed-loop poles, 
be sure that the zero is far removed from the dominant second-order 
pole pair to yield approximately the same response obtained without the 
finite zero.     
• If the assumptions cannot be justified, your solution will have to be 

simulated in order to be sure it meets the transient response 
specification.

jw



• In figure 8.18, the parameter of interest is the open-loop pole 
at     . How can we obtain a root locus for variations of the 
value of   ?

• If the function              is formed as

The problem is that     is not a multiplying factor of the function, as the 
gain, K, was in all of the previous problems. 

• The close-loop transfer function’s denominator is               , we 
effectively want to create an equivalent system whose 
denominator                .

• For the system of Figure 8.18, the closed-loop  transfer function is
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GENERALIZED ROOT LOCUS

• Isolating     ,

To convert the denominator to the form of K, let’s divide by

from the denominator and numerator.

• Conceptually, Eq. (8.33) implies that we have a system for which
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GENERALIZED ROOT LOCUS

Figure 8.19
Root locus for the system of Figure 8.18, 
with p1 as a parameter

Figure 8.18
System requiring a root locus 
calibrated with p1 as a parameter



Root Locus for Positive-Feedback Systems

• The properties of the root locus change dramatically if the 
feedback signal is added to the input rather than subtracted.

• The positive-feedback system show in Figure 8.20.

retrace the development of the root locus
for the denominator of Eq.(8.35)

• The root locus for positive-feedback systems
consists of all points on the     plane where
the angle of                    .
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Figure 8.20
Positive-feedback system
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