방사산관리학 측면에서의 방사선장해

책임을 다하면 위대함으로 돌아온다

Kim kee bog

- 1. 방사선생물학적 측면에서의 방사선 장해
- 2. 방사선관리측면 시 확률적/결정적영향에 대해 학습한다.
- 3. 방사선방어의 한도 및 준위에 대해 학습한다.

3) 방사선 생물학적 측면에서의 방사선장해

(1) 신체적 장해

① 급성장해 생물체에 대한 방사선 효과가 피폭 후 1~2개월 이내에 발생할 경우 이를 방사선의 급성효과라 한다.

발단선량이 존재하는 결정론적 장해이다

- 림프구·백혈구·적혈구·혈소판 감소 등 일시적인 혈액 장해
- 오심·구토·설사 등 방사선 숙취현상
- 조혈·위장·중추신경·분자사 등 급성방사선증후군
- 결막염 등 눈의 장해
- 탈모, 홍반, 수포, 궤양 등 급성 피부장해
- 일시불임 등 남자 여자의 생식선 장해

ⓐ X선이나 감마선에 의한 전신조사에 의한 전신 장해

발단선량(Gy)	증상
0.25 이하	임상증상 없음
0.50	백혈구의 감소
0.75	임상증상 발현
1.00	구토, 전신무력감
1.5	방사선숙취 50%
2.0	장기 백혈구감소, 사망 5%
2.25	방사선숙취 100%
2.5	탈모
4.0	사망 30일간 50%
6.0	사망 14일간 90%
7.0	중추신경장해로 사망 100%

비고 사고 최대허용량 0.25Gy

위험한계선량 1.0Gy

반치사선량(LD50) 4.0Gy

 D_{10}

치사선량(LD100) 7.0Gy

- ⓑ 급성 방사선증후군(acute radiation syndrome)의 종류
- 분자사(molecular death) : $1,000 \text{G} \ y$ 이상 피폭 시 생물의 생명을 유지하는 데 필수적인 산소나 호르몬 등과 같은 물질이 파괴 또는 활성도가 상실되어 피폭 도중 또는 직후에 사망한다.
- 중추신경 증후군(central nervous system syndrome) : 포유동물이 50Gy 정도 이상의 전신 피폭 시 $1일^22$ 후에 죽는다(중추신경 손상).
- 위장 증후군(gastrointestinal syndrome) : 포유동물이 10Gy 정도 이상 피폭 시 대부분 $2일^{\sim}5일$ 만에 죽는다 (소화기관의 장해 : 소장융모세포 대장에서발견, 설사, 백혈구 감소, 세균감염 등).
- 조혈 증후군(hematopoietic syndrome) : 사람이 5Gy 정도의 전신 피폭 시 직후에 메스꺼움, 구토, 2주~3주후 조혈기관(골수)의 장해발생이 일어난다(빈혈, 충혈, 세균감염으로 사망한다).

② 지발성(만성) 장해

생물체에 대한 방사선 효과가 피폭 후 2개월 후에 발생할 경우 이를 방사선의 만성효과라 한다. 피폭 후 증세가 나타나는 시점까지 장기간이 소요되며 장해가 반드시 방사선에 의한 것이라고 확정하기가 어렵다. 현재 지발성 장해의 종류는 <다음>과 같다.

- 백혈병(혈액암)
- 발암(고형암) 갑상선암, 유방암, 폐암, 뼈종양, 기타조직의 암
- 재생불량성 빈혈
- 백내장
- 수명단축(노화촉진)이나 수명연장
- 모세혈관 확장·색소침착·위축 등 만성 피부장해
- 수정체혼탁·백내장 등 눈의 장해
- 영구불임 등 생식선 장해
- 임신한 여성의 태아 장해

① 정의 및 종류

생식세포에 방사선 피폭 시 피폭된 사람의 자손에서 나타나는 인체영향으로 우성·열성등 유전자돌연변이와 염색 체돌연변이로 구분할 수 있다. 또한 염색체돌연변이의 종류는염색체 수 이상과 염색체 구조이상(결실, 역위, 전좌, 중복, 염색체교환)으로 구분된다.

② 배가선량

- 인공돌연변이율을 자연돌연변이율의 2배로 높이는 데 필요한 방사선량
- 배가선량= 자연돌연변이발생률 /방사선돌연변이상수
- 저선량 조사 하에서는 $0.2 \sim 2 \mathrm{G} y$, 고선량 조사 하에서는 $0.15 \sim 0.3 \mathrm{G} y$ 로 추정하고있다.
- 배가선량은 유전적 영향의 지표로서 배가선량이 크다는 것은 방사선의 영향이 적다는 것을 의미한다.

- 1) LD 50 (30) 방사선에 피폭된 생물의 50%를 30일 이내에 치사케 할 수 있는 선량 •4.5 ~ 5Gy (반치사선량)
- 2) LD 100 (30) 방사선에 피폭된 생물의 100%를 30일 이내에 치사케 할 수 있는 선량 •7~8Gy (완전치사선량)
- 3) D 10 단위
- •조사받는 세포나 미생물을 14일 이내에 90%를 치사시킬 수 있는 선량

문제) 물리적반감기가 30일인 방사성핵종이 체내에 들어온 지 60일 후에 체내에 잔류되어 있는 전 방사능을 측정하였더니 처음의 1/8로 감소되었다. 이 핵종의 생물학적반감기는 얼마인가? 풀이:

$$\begin{split} &\frac{1}{T_{\text{eff}}} = \frac{1}{T_{\text{p}}} + \frac{1}{T_{\text{b}}} \\ &T_{\text{eff}} = \frac{T_{\text{p}} \times T_{\text{b}}}{T_{\text{p}} + T_{\text{b}}} = \frac{30 \ T_{\text{b}}}{30 + T_{\text{b}}} \\ &\frac{I}{I_{0}} = e^{-0.693 t T_{\text{eff}}}, \quad ln \frac{I}{I_{0}} = -\frac{0.693 t}{T_{\text{eff}}}, \quad ln \frac{1}{8} = -\frac{0.693 t}{T_{\text{eff}}} \\ &-2.08 = -0.693 \times 60 \times \frac{30 + T_{\text{b}}}{30 \ T_{\text{b}}} \end{split}$$

$$\therefore T_b = 60 day$$

문제) 다음 중 방사선에 의한 발생되는 인체영향의 설명이 틀린 것은?

- ① 신체적 장해 인체세포에 방사선이 조사되어 발생되는 인체영향
- ② 유전적 장해 생식세포에 방사선이 조사되어 발생되는 인체영향
- ③ 급성 장해 방사선 피폭 후 2개월 이전에 발생되는 인체영향
- ④ 결정적 영향 많은 선량의 방사선을 짧은 시간 내에 피폭했을 때 발생되는 인체영향
- ⑤ 확률적 영향 백내장, 태아 장해가 발생되는 인체영향

문제) $LD_{50(30)}$ 이란 방사선에 피폭된 생물의 50%를 30일 이내에 치사케 할 수 있는 선량을 말한다. 인간에 대한 $LD_{50(30)}$ 은 약 얼마인가?

- ① $0.5 \sim 1.5 G y$
- ② $4.5 \sim 5G y$
- $37 \sim 8G y$
- $49 \sim 100 \text{G } y$
- ⑤ 1000G y 이상

문제) 사람에게 LD 50 (30) 정도의 전신 피폭 시 발생되는 급성방사선 증후군은?

- ① 조혈 증후군
- ② 위장 증후군
- ③ 중추신경 증후군
- ④ 분자사
- ⑤ 돌연변이

문제) 다음 급성장해 중 가장 발생하기 쉬운 것은?

- ① 홍반
- ② 일시적 탈모
- ③ 소장출혈
- ④ 백혈구 수 감소
- ⑤ 남성의 영구불임

문제) 다음 중 만성장해의 종류가 아닌 것은?

- ① NVD 증후군
- ② 발암(백혈병)
- ③ 백내장
- ④ 재생불량성 빈혈
- ⑤ 피부의 색소침착 및 위축

문제) 다음 명칭 중 선질이란 방사선의 질을 의미한다. 선질과 무관한 것은?

- ① *k*V*p*(관전압)
- $2 mA s (mA \times sec)$
- ③ HVL (반가층)
- ④ F ilter의 원자번호와 두께
- ⑤ 방사선의 종류와 방사선 에너지

문제) 방사성 물질의 내부 섭취 시 장기 친화성과 관련된 내용 중 서로의 연결이 다른 것은?

① 耳: 222R n

② 畸:90S r

③ 갑상선: 131I

④ 근육: 137C s

⑤ 신장: 239P u

문제) 향골성핵종에 대한 설명 중 틀린 것은?

- ① 뼈 몸통보다는 뼈의 양 끝단에 잘 모인다.
- ② 골수 피폭으로 조혈작용에 영향을 준다.
- ③ 물리적 반감기는 길지만 생물학적 반감기는 비교적 짧다.
- ④ 226Ra, 90Sr는 대표적인 향골성핵종들이다.
- ⑤ 인체 내부 섭취경로 측면에서 경구섭취보다는 호흡섭취가 더 많다.

문제) 방사성 핵종의 물리적 반감기 (T_p) 가 6일이고 생물학적 반감기 (T_b) 가 3일이라고 가정할 때, 유효반감기 (T_{eff}) 는 얼마인가?

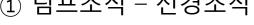
- ① 1일
- ② 2일
- ③ 3일
- ④ 4일
- ⑤ 5일

문제) 방사선에 의한 태아장해와 관련된 내용 중 틀린 것은?

- ① 방사선 감수성이 가장 높은 시기는 기관 형성기이다.
- ② 기관 형성기는 약 2~8주이며 이때 0.1Gy 정도 피폭 시 기형(소두증)이 발생한다.
- ③ 태아기에 0.2G y 정도의 방사선 피폭 시 지능저하가 초래된다.
- ④ 기형 및 지능저하는 결정적 영향이다.
- ⑤ 지능저하의 경우 방사선 피폭선량 1Gy당 IQ20점씩 저하됐다고 평가한다.

문제) 방사선에 의한 인체 영향을 미치는 인자가 아닌 것은?

- ① 기초대사율
- ② 성별
- ③ 선량
- ④ 나이
- ⑤ 공간적 선량분포

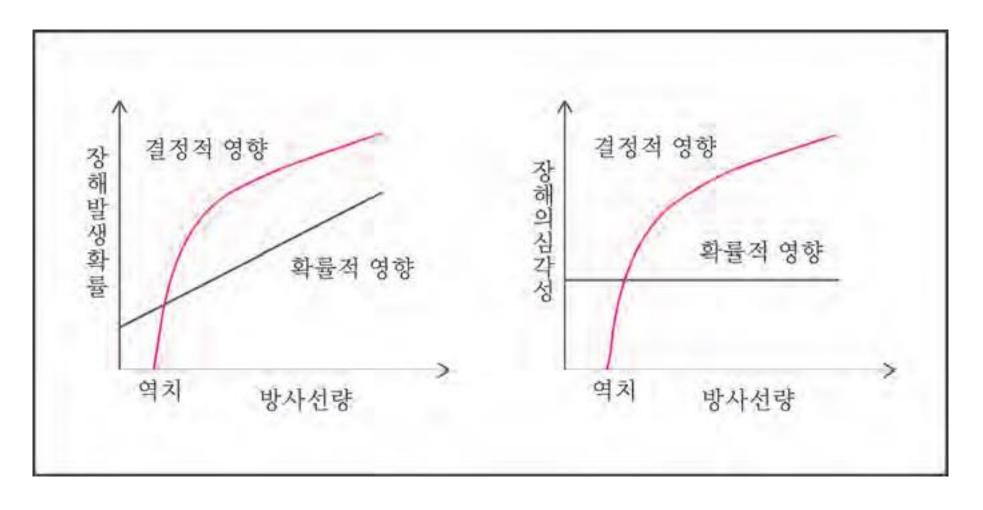


문제) 현재 유전적 영향의 지표로 사용하는 배가선량에 대한 설명 중 틀린 것은?

- ① 배가선량 =자연돌연변이발생률/방사선돌연변이상수
- ② 배가선량이란 인공돌연변이율을 자연돌연변이율의 2배로 높이는 데 필요한 방사선량이다.
- ③ 저선량 조사 하에서 사람의 수정 배가선량은 약 $0.2 \sim 2 \mathrm{G}~y$ 이다.
- ④ 배가선량이 크다는 것은 방사선의 영향이 크다는 것을 의미한다.
- ⑤ 유전적 영향 중 염색체 구조이상에는 결실, 역위, 전좌, 중복, 염색체교환이 있다.

문제) 세포분열에 비례하고 세포분화 정도에 반비례하는 방사선 감수성은 인체 각각의 장기또는 조직마다 서로 다르다. 다음 중 방사선 감수성이 가장 높은 조직과 가장 낮은 조직으로 연결된 것은?

① 림프조직 – 신경조직



- ② 골수 결합조직
- ③ 생식선 근육조직
- ④ 골단 연골 갑상선
- ⑤ 소장점막 간장

4) 방사선관리학 측면에서의 방사선장해

방사선방어측면에서 방사선 피폭선량에 따른 인체영향의 경우 역치가 존재하는 결정적영향과 역치가 존재하지 않는 확률적 영향으로 쉽게 구분할 수 있다.

방사선량에 따른 결정적 영향과 확률적 영향 관계곡선

(1) 결정적 영향(deterministic effects)

결정적 영향이란 어떤 장기나 조직이 역치 이상의 방사선량을 초과하면 인체장해가 반드시 생기는 영향을 의미한다. 다시 말하면 짧은 시간에 고선량의 방사선량을 인체가 받으면 나타나는 장해라고 할 수 있다.

- ① 짧은 시간 동안의 방사선피폭에 의하여 나타나는 급성 신체적 영향이다.
- ② 발단선량이 존재한다. \rightarrow 약 0.5Gy 이상
- ③ 장해 발생확률은 방사선량에 따라 증가한다.
- ④ 장해의 심각성은 선량에 따라 증가한다.
- ⑤ 세포손상 및 장해, 세포기능상실, 급성 과피폭 시 사망, 백내장, 불임, 피부홍반 등

(2) 확률적 영향(stochastic effects)

확률적 영향은 역치가 존재하지 않는다는 것이 결정적 영향과 큰 차이점이다. 확률적영향은 오랜 기간 동안 저선량의 방사선량 피폭 시 발생되는 인체장해이다.

- ① 장기간 동안의 저선량피폭에 의하여 만성적으로 나타나는 신체적 영향이다.
- ② 장해의 발생확률이 선량에 비례한다(선형관계, 선형 2차곡선 관계).
- ③ 장해의 심각성은 방사선량 증가에 따라 일정하다(무관하다).
- ④ 방사선량이 "0"임에도 불구하고 장해발생확률이 존재한다.
- ⑤ 발단선량이 없다.
- ⑥ 발암, 백혈병, 유전적 효과 등

문제) 다음 중 확률적 영향에 대한 설명으로 옳지 않은 것은?

- ① 선량 증가에 따라 방사선장해 발생확률이 증가한다.
- ② 선량 증가에 따라 방사선장해의 심각성이 증가한다.
- ③ 발단선량이 존재하지 않는다.
- ④ 선량이 zero임에도 불구하고 방사선장해발생확률이 존재한다.
- ⑤ 만성적으로 나타나는 신체적 영향으로 발암이나 유전효과가 대표적이다.

문제) 다음 중 방사선에 의한 수정체 혼탁의 발단선량은?

- ① $0.65 \sim 1.5$ Gy
- $\bigcirc 0.5 \sim 2Gy$
- $34.5 \sim 5Gy$
- $\textcircled{4} \ 5 \sim 10 \text{Gy}$
- \bigcirc 10 \sim 25Gy

문제) 인체 각 조직의 발단선량이 잘못 연결된 것은?

- ① 백내장 5Gy
- ② 피부염색체 변화 0.5Gy
- ③ 백혈구감소 0.5Gy
- ④ 남성의 일시불임 0.15Gy
- ⑤ 여성의 영구불임 1.5Gy

문제) 임신한 여성의 방사선 피폭은 태아에게 위험하다. 수정 후 가장 위험한 시기는 언제인가?

- ① 수정란이 자궁벽에 착상할 때까지
- ② 착상전기
- ③ 기관형성기
- ④ 태아기
- ⑤ 위험시기는 모두 동일

방사선방어

- 1. 방사선방어의 기준
- 2. 방사선방어
- 3. 외부방사선량의 산정 및 평가

1 방사선방어의 기준

- 1) ICRP Pub. 60(1990년)의 방사선방어의 목표
 - ① 이득을 가져오는 방사선피폭을 수반하는 행위를 부당하게 제한하지 않으면서 인체의 안전을 확보한다.
 - ② 방사선피폭의 유해한 결정적 영향(deterministic effects)의 발생을 방지한다.
 - ③ 방사선피폭의 확률적 영향(stochastic effects)을 사회에서 용인 가능한 수준까지 제한(limit)한다.

참고사항: ICRP Pub. 103(2007년)

- 1) ICRP 103은 과정기반 접근법에 의해 계획피폭상황에서만 선량한도를 적용하였으며 공기 중 라돈에 대해서는 구체적인 값600 Bq-가정,1500-직장을 제시하였다.
- 2) ICRP 103은 "사람에 대한 방사선 방호체계"이며 정당화, 최적화 등은 "방사선방호의 목표"와 대비시켜 "방사선방호의 원칙"이라고 부른다.
- 3) ICRP 103에서는 행위에 기반한 접근법이 아니기 때문에 "행위의 정당화"를 단순히"정당화"로 표현한다.

ICRP Pub. 60(1990년)의 방사선방어의 기본원칙

국제방사선방어위원회는 방사선의 평화적 이용과정에서 발생하는 순이득의 관점에서 정당화되는 방사선피폭은 개인선량한도가 초과되지 않는 조건하에서 피폭선량을 "합리적으로 달성할 수 있는 한 충분히 낮게(as low as resonable achievable, ALARA)" 유지되어야 하는 것을 방사선방어의 기본원칙으로 삼고 있다.

신규 또는 계속행위 (ICRP Pub. 26 및 60) 개입 (ICRP Pub. 60)

- (1) 행위의 정당화(이익 > 손해)
- (2) 방어의 최적화(선량제약치 도입)
- (3) 개인의 선량한도화 (ICRP 권고 선량한도 이내)

- (1) 개입의 정당화(이익 > 손해)
- (2) 개입의 최적화
- (개입의 종류, 규모, 기간 → 순이득 최대)

- ※ 방사선방어에서 직업상 피폭을 구분하는 이유(방사선작업종사자와 일반인을 비교)
- ① 피폭이 방사선방어조직에 의하여 관리됨
- ② 피폭집단이 비교적 소규모
- ③ 피폭을 수반하는 행위나 절차로부터 발생하는 이득의 일부를 직접 또는 간접으로 돌려 받는다는 점

- ※ ICRP(60)에서 자연방사선에 의한 피폭을 직업피폭으로 포함시키는 것
- ① 규제기관에 의해서 라돈에 주의가 필요한 작업 장소에서의 작업
- ② 규제기관이 인정한 양의 천연방사성물질을 포함한 물질의 사용. 저장
- ③ 제트기의 운항(승무원 포함)
- ④ 우주여행

선량제약치(ICRP 60)와 선량한도

(1) 선량제약치의 특징

선량제약치는 ICRP(60)의 방사선방어의 최적화 원칙에서 최적화를 만족시키기 위하여 도입한 개인선량의 상한 치이다. 또한 행위의 특성에 맞게 선원중심으로 설정한 선량관리목표, 최적화의 정량적 참조값이다.

선량제약치는 <다음>의 특징을 갖는다.

- ① 최적화의 판단을 행할 경우 개인선량의 상한치가 된다.
- ② 선량제약치의 상한은 개인선량한도를 넘지 않도록 설정된다.
- ③ 직업적 피폭의 선량제약치는 직종에 대하여 설정된다.
- ④ 일반인의 피폭 시의 선량제약치는 선원에 대하여 설정된다.
- ⑤ 의료피폭의 선량제약치는 전형적인 진단에 대하여 설정된다.

(2) 최적화 판단기법

■ 개입에 대한 방사선 방호체계(ICRP - 60) 첫째, 개입의 정당화: 개입의 도입은 손해보다 이익이 더 커야 한다.

둘째, 개입의 최적화: 개입의 종류, 규모, 기간은 선량저감의 순 이득이 최대가 될 수 있도록 최적화가 되어야 한다. 행위 및 개입에 대한 방호 <mark>최적화</mark>를 판단하기 위한 기법

-비용 편익 분석:(cost - benefit analysis):비효율적인 방안제거하고 남은 비용 효능적방안을 비교하여 우위를 부여하는 방법

-비용 효과분석: (cost - effective analysis):선량을 추가로 낮춰 얻은 경제적 이득이 그 감축을 달성하는 사회적비용 과 같아지는 선량을 선정

-다속성 효용 분석: (multi - attribute utility analysis): 상황을 특성화하는 모든 관련기준 (방어방안의 비용 집단선량, 개인선량, 시공간적피폭의 분산, 위험수준의 이해의 근거)에서 각 방안에 대해 점수를 매기는 방법을 세워 다양한 속성과 그 상대적 중요도를 고려한 평가방법

-다범주 우위 분석: (multi - criteria outranking analysis): 다속성(요인)효용분석을 적용하기에 불확실성이 큰 보다 모호한 적용하는 기법으로 인자와 방안들을 둘씩 상호우위를 비교하는것

(3) 선량한도(dose limit)

선량한도란 외부에서 피폭하는 방사선량과 내부에서 피폭하는 방사선량을 합한 피폭방사선량의 상한값으로 정의한다.

선량한도는 복고적인 개념으로서 강제적인 규범으로 규정하고 있지만 선량제약치는 전망적인 개념으로서 강 제적인 규범이 아니다.

선량한도와 선량제약치의 비교

선량한도(Sv)

선량제약치(man-Sv)

- ① 개인(직업인)과 공중에 대하여 설정된 피폭의 상한치 ② 제어되고 있는 모든 행위 또는 피폭원으로부터 개인이 실제 받는 선량의 합계에대해 적응되는 기준치
- ③ 초과하여서는 안 되는 상한치(법정한도)
- ④ 복수의 피폭원으로부터 받는 개인의 총피폭선량의 상한치
- ① 방사선방호의 최적화의 제한조건으로 하나의 피폭원, 직종에서 받는 선량의 상한치
- ② 직업상 피폭, 의료피폭, 공중피폭에 대해 설정
- ③ 방사선 방호수단의 계획 입안을 위하여 이용되는 기준
- ④ 행위, 피폭원의 관점에서 설정된 개인선량 의 상한치

방사선방어의 구분과 평가선량

구분선량평가의 목적방사선방어체계와의 관계평가 선량개인에 주목한개인의 risk방사선방어(individual-related assessment)선량한도개인선량(Sv)

선원에 주목한 집단의 detriment 최적화 집단선량 방사선방어 (source-related assessment) 정당화 (man·Sv)

※ 의료상 피폭이 선량한도의 적용대상에서 제외되는 이유

☞ 피폭관리가 가능하지만 의료상의 목적으로 방사선의 사용이 최선이라는 판단이 이 피폭을 정당화하고 있으며 피폭으로 인한 모든 이득이 환자 자신에게 돌아오는 것이기 때문이다.

문제) 다음 중 원자력법 선량한도에 규정하고 있는 방사선작업종사자의 연간 유효선량한도와 피부등가선량한도를 알맞게 연결한 것은?

- ① 20mSv 150mSv
- ② 50mSv 150mSv
- 3 20mSv 500mSv

500mSv - 500mSv

책임을 다하면 위대함으로 돌아온다

Kim kee bog

