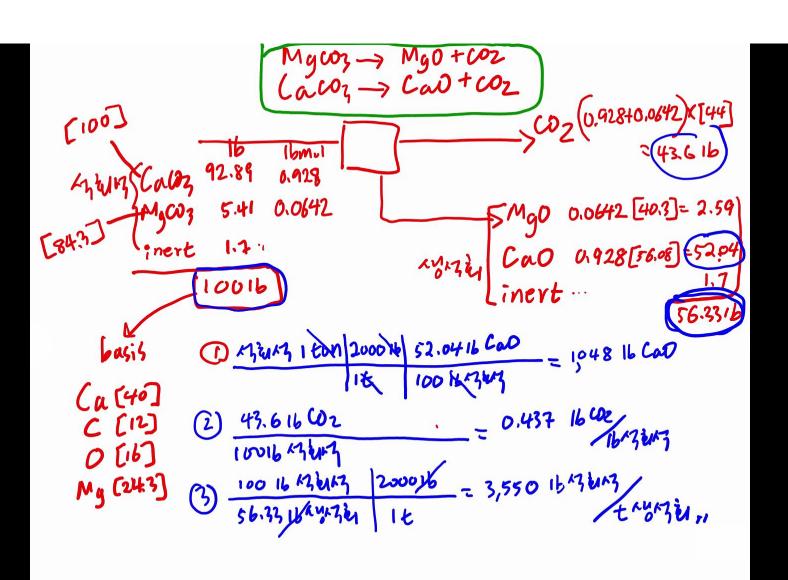
9. 화학반응과 양론

9.1 양론 (Stoichiometry) = 화학반응에서 반응물과 생성물 사이의 정량적 관계

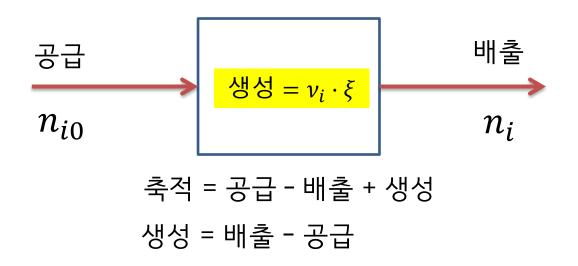
$$CH_4 + O_2 = CO_2 + H_2O$$

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

양론계수 (Stoichiometric coefficient)



석회석의 분석치(질량%)가 다음과 같다.


CaCO392.89%MgCO35.41%불활성물1.70%

이 석회석을 가열하여 생석회(산화물)를 얻을 수 있다. 다음을 구하라.

- (a) 석회석 1 ton으로 만들 수 있는 CaO 질량(lb)
- (b) 석회석 1 lb에서 얻을 수 있는 CO₂ 질량(lb)
- (c) 생석회 1 ton을 만드는데 필요한 석회석 질량(lb)

9.2 화학반응있는 공정, 정상상태

Let Extent of reaction, 반응진행도 = 양론계수당 생성몰수

$$\xi = \frac{\text{생성몰수}}{\text{양론계수}} = \frac{n_i - n_{i0}}{\nu_i}$$

$$n_i = n_{i0} + \nu_i \cdot \xi$$

[Nu].[ksai]

여러 반응이 독립적으로 진행된다면,

$$n_i = n_{i0} + \sum_{k=1}^{\infty} \nu_{ki} \cdot \xi_k$$

2개의 반응이 독립적으로 진행된다면,

$$n_i = n_{i0} + \nu_{1i} \cdot \xi_1 + \nu_{2i} \cdot \xi_2$$

Ex 9.4 공급량과 생성량에 관한 자료를 이용하여 다음 반응의 반응진행도를 구하라.

$$N_2 + 3H_2 = 2NH_3$$

성분	공급량	생성량
N_2	100g	
H ₂	50g	
NH ₃	5g	90g

Ex 9.4 공급량과 생성량에 관한 자료를 이용하여 다음 반응의 반응진행도를 구하라.

$$N_2 + 3H_2 = 2NH_3 + 2$$

		성분	공급량	생성량	
		N ₂ [28]	100g/28 = 3.57 m	nol MNZ	
		H ₂ [z]	50g/2 = 25	11	
		NH ₃ [/7]	5g /17 - 0,294	90g 77 - 5/1294 mol	
for	NI	了) 」 0 答答1四名	Vi 0 - 5,294.	2 = 2.5	
MNZ= MNO+ VNZ = 3,57+ (-1). (2.5) = 1.07					1.07
		Mrz huzo	0+ VHi3 = 25	+ (-3)(2.5) = 17.	5 mol

한정반응물과 과잉반응물

$$C_7H_{16} + 110_2 \rightarrow 7CO_2 + 8H_2O$$

주입량 = 1 mol 12 mol

한정반응물 (limiting reactant): 양론적으로 제일 먼저 소모될 반응물과 이 반응물 (excess reactant): 한정반응물보다 많이 주입되는 반응물

각 반응물의 최대반응도를 구했을때, 적은 값을 갖는 놈이 한정반응물이다!!! 최대반응도 = 주입량이 모두 반응했다고 가정할 때의 반응진행도

$$\xi^{max} of O2 = \frac{n_{O2} - n_{O2,0}}{v_{O2}} = \frac{0 - 12}{-11} = 1.09$$

$$\xi^{max} of C_7 H_{16} = \frac{0 - 1}{-1} = 1.00$$

따라서 heptane 이 한정반응물이다!!

과잉율% (excess%) =
$$\frac{ \overline{S} - \underline{B} \underline{B}}{\underline{B} \underline{B}} x 100 = \frac{12 - 11}{11} x 100 = 9.1\%$$

전화율 (Conversion)이란, 공급물이 생성물로 전화되는 분율이다.

$$\frac{\text{전화율}}{\text{전화B}} = \frac{\text{소비된 } A}{\text{공급된 } A}$$

$$X = \frac{n_{i0} - n_i}{n_{i0}}$$

$$n_i = n_{i0} - n_{i0} X$$

$$n_i = n_{i0} + \nu_i \xi$$

소비된
$$A = n_{i0} X = -\nu_i \xi$$

$$\begin{array}{c} A \\ \hline \\ C \end{array}$$

선택도(Selectivity) =
$$\frac{B}{C}$$

수율(Yield) =
$$\frac{B}{A}$$

Ex9.8

염화알릴의 반응 중에서 두 반응을 들면 다음과 같다.⁶⁾

$$Cl_2(g) + C_3H_6(g) \rightarrow C_3H_5Cl(g) + HCl(g)$$

$$Cl_2(g) + C_3H_6(g) \rightarrow C_3H_6Cl_2(g)$$

여기에서

C₃H₆ : 프로필렌(프로펜), MW = 42.08

 C_3H_5Cl : 염화알릴(3-클로로프로펜), MW = 76.53

 $C_3H_6Cl_2$: 염화프로필렌(1,2-디클로로프로펜), MW = 112.99

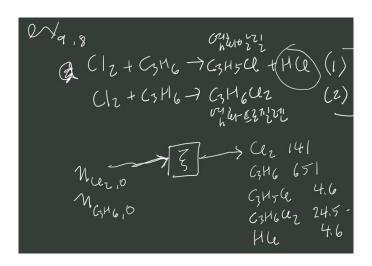
반응이 진행된 뒤에 회수한 화학종은 표 E9.8에 보인 것과 같다.

亚 E9.8

화학종	물질량(mol)	
Cl ₂	141.0	
C_3H_6	651.0	
C ₃ H ₅ Cl	4.6	
C ₃ H ₆ Cl ₂	24.5	
HCl	4.6	

공급물 중에는 염화알릴이 들어있지 않다고 가정하고 다음을 구하라.

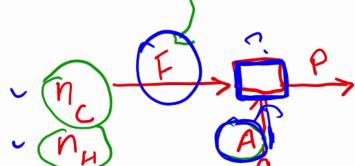
- a. 반응기에 공급한 Cl_2 와 C_3H_6 의 물질량(mol) C_3 시기
- b. 한정반응물
- c. 과잉반응물
- d. C₃H₆의 C₃H₅Cl로의 전화율
- e. C₃H₆Cl₂ 에 대한 C₃H₅Cl의 선택도
- f. C₃H₅Cl의 수율(g C₃H₅Cl/g C₃H₆ 공급량)
- g. 첫 반응과 두 번째 반응의 반응진행도


그 그 그 집 요요 레이트 트린 테기므으 가추차기 의해 고전을 개선할 수 있는 화학

for (2), 245-0 = 24.5

Fa C3H6 (5) = 1 C3H6, 0+ (-1)(4.6)+(-1)(24.5) " NC2H6,0 = 680.1 mol. (6) 223 11 2227 5 max = 0-680,1 = 680,1 3 of az = == 1701 = 1701 - + 3627 / (d) GM6 & C3M5(e Zen 22 4) X=112382 = 4.6 = 6.76 × 10-3 (e) NZEMEZ B CANSLE 4.6 A B) C
Sclentivity G GAHGUZ 2415 A = 0119

Ex9.8 을 원소수지(Elemental balance)로 풀어보자!


Elemental balance 에서는 반응을 고려할 필요없다. 원소에 대해서만 mol balance를 세워본다.

12/2/5=2ea
Glemente balance

$$\frac{in=out}{C_3: n_{C_3M_{610}} = 651+4.6+24.5=680.1}$$
H
(e: $2N_{cero} = 2(141)+4.6+2(24.5)+4.6=340.2$
: $n_{cero} = 170.1$

P9.6 탄소,수소,산소로 된 화합물의 식을 구하기 위해 연소장치를 사용한다. 이 화합물시료 0.6349g 으로부터 CO2 1.603g, H2O 0.281g 이 생성되었다. 이 화합물의 실험식을 구하라.

P9.6 탄소,수소,산소로 된 화합물의 식을 구하기 위해 연소장치를 사용한다. 이화합물 시료 0.6349g 으로부터 CO2 1.603g, H2O 0.281g 이 생성되었다. 이화합물의 실험식을 구하라.

$$\frac{P}{H20=0.281/18=0.03643}$$
 mol $H20=0.281/18=0.01561$

$$0: n_0 + 2A = 2(0.03643) + 0.01561$$

$$0.6349 = 12N_C + N_H + 16N_O$$

:. $N_O = 0.0104$

$$\frac{n_{C}}{n_{O}} = \frac{0.03643}{0.0104} = 3.5 \rightarrow 7$$

$$\frac{n_{H}}{n_{O}} = \frac{0.03122}{0.0104} = 3. \rightarrow 6$$