Adaptive Learning

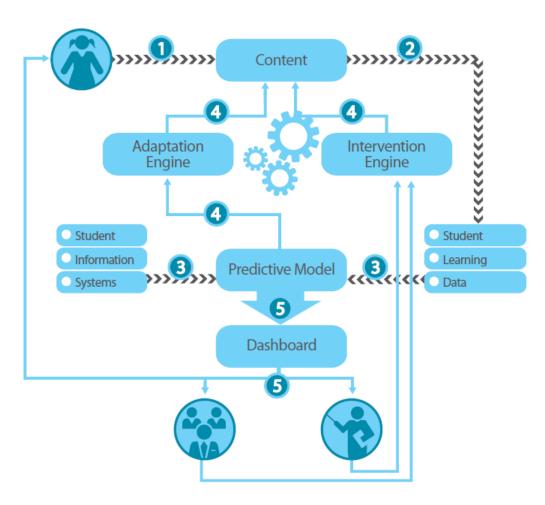
학습목표

- 1. Adaptive Learning의 개념과 특징에 대해 이해할 수 있다.
- 2. Blended Learning에서 Adaptive Learning을 실천할 수 있다.

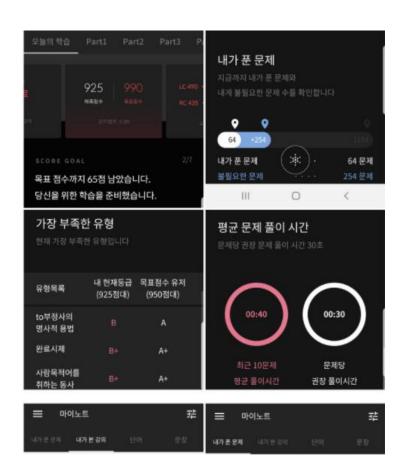
목차

- 1. Adaptive Learning의 개념과 특징
- 2. Adaptive Learning 을 이해하기 위한 교수설계이론
- 3. Adaptive Learning 모델, 사례
- 4. Blended Learning에서 Adaptive Learning을 적용하기 위한 실천 전략

- Adaptive Learning이 주목받는 이유
 - 역사의 3간
 - 인간, 시간, 공간
 - 인간 연결대상의 변화 : 기계, 인공지능
 - 생산 에너지의 변화 : 원자력
 - 연결시간과 공간의 변화 : 가상현실


■ Adaptive Learning이란

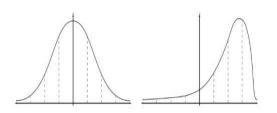
- 학습자의 수준과 학습 스타일에 맞게 학습 정보나 방법 등을 제공하는 전자 학습(이러닝)
 - 교수자는 수업 시간에 학생 개개인 단말에서 학습활동 데이터 수집하여 학습 이해도 조사
 - 학습에 흥미를 잃지 않도록 게임, 동영상, 음악 등을 적절히 사용하여 피드 백을 보내어 학습성과를 올릴 수 있게 함
 - 학생이 수업 내용을 얼마나 이해하는지, 무엇을 잘하는지 등을 파악하여
 맞춤형 교육을 하는 것
- 적응형 학습에 활용되는 기술
 - 클라우드 서비스
 - 인공지능
 - 가상현실


- Adaptive Learning이란
 - Adaptive Learning에서 핵심은 학습자의 학습분석
 - 입력 데이터 분석, 결과 데이터 분석
 - 학습분석이 되지 않은 상태에서 단순하게 학습자의 자가 진단에 따른 적용은
 - Adaptive라기보다 customizing
 - 장기적인 면에서 학습자의 학습 데이터를 수집하고 분석하기 위한 모델 구축이 필요

사회 검찰-법원 교육 사건사고 복지 교통 환경 지역 건강 성균관대 문태섭 교수팀, 적응형 평생학습 알고리즘 개발 성공 [중앙일보]입력 2019.12.09 14:36 🚇 👱 가 가 성균관대학교(총장 신동렬)는 전자전기공학부 문태섭 교수 연구팀이 인공지능 분야의 두 가지 핵심기술[적응형 평생학습 알고리즘 개발(공동 1저자 안홍준 석사과정, 차성민 박사과정) 및 설명가능 인공지능 방법의 취약성 규명(공동 제 1저자 허주연 석사과정, 주성환 석박통합과정)] 개발에 성공했다고 밝혔다. 본 연구는 과학기술정보통신부(MSIT)의 재원으로 정보통신기획평가원(IITP)과 한국과학기술연구원(KIST)의 지원을 받아 수행되었으며, 12월 9일(월) AI/ 기계학습 분야의 세계 최고 권위의 학술대회인 신경정보처리학회(Neural Information Processing Systems, NeurIPS)에서 논문 2편을 발표하였다.

■ Adaptive Learning이란

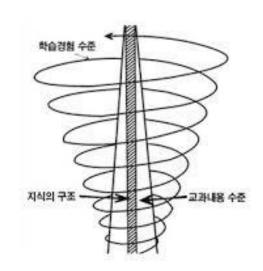
■ Adaptive Learning의 구현 사례


- 인공지능 1:1 맞춤학습
 - 예측 점수
 - 부족한 유형 파악
 - 많은 문제량

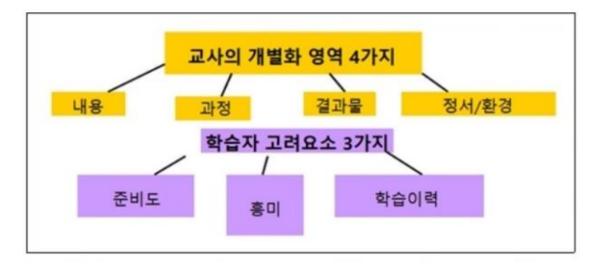
- 강의 큐레이션
 - 자주 틀리는 문제 알림
 - 맞춤형 강의 제공

산타토익

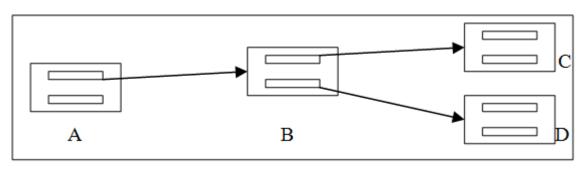
- Adaptive Learning 현황
 - 코로나 19로 비대면 교육상황이 증가
 - 학교에서는 민간기업 클라우드를 활용한 플랫폼 사용
 - 학생이 기기 확보에 어려움
 - 시스템 불안정에 따른 일정 연구 및 온라인 과제 대체
 - 정부의 명확한 가이드라인 제공 지연 및 부재
 - 기존 학습 방식을 탈피한 새로운 교육 시스템에 대한 요구 증가
 - 쌍방향 수업 도구
 - Zoom, google, youtube, kakao live 등
 - 대학은 주로 외주 플랫폼, 혹은 자체 개발 플랫폼
 - 주 사용 콘텐츠
 - 자체 제작 콘텐츠
 - 공유 콘텐츠는 저조
 - 원격 비대면 학습을 통해 확보할 수 있는 데이터의 출처가 파편화 되어 적응형 학습을 위한 고려가 부족


- Bloom의 완전학습과 Adaptive Learning
- 학생은 차시학습으로 넘어가기 전에 해당 단계 정보에 통달하는 단계(지식 테스트의 90% 이상)에 이르러야 함
- 학생이 테스트에서 지식을 습득하지 못하면 학습과 검증에 대한 추가적 지원을 받고 다시 시험을 치름
- 이러한 순환은 지식의 완전한 습득에 이를 때까지 순환적으로 계속 이 어짐
- 동일한 대상을 학습하고 동일한 수준의 통달을 성취하기 위해 서로 다른 학생들에게 제각기 요구되는 시간에 초점을 두는 것
- 모든 학생들이 동일한 대상을 학습하기 위해 거의 동일한 시간이 주어 지는 고전학습이론에 비해 시간의 양이 많은 편임
- 학생의 학습성취 실패를 학생의 탓으로만 하지 않음
- 적절한 시간과 지도안을 안배하는 것이 핵심

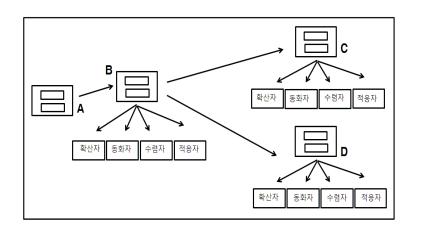
- Carroll의 학교학습이론과 Adaptive Learning
 - 학교학습모형의 특징
 - 지적학습에 작용하는 주요 변인들간의 상호관계를 기초로 완전학습의 가능성을 이론적으로 제시
 - 두 개의 시간 변인을 도입하고 이와 관련된 하위 변인들 간의 관계에 따라 학습 정도가 결정
 - 시간변인은 학습에 필요한 시각, 학습에 실제로 소요한 시간 등이 해당
 - 학습의 정도
 - 학습정도는 도달되어야 할 목표기준에 비추어 실제로 성취한 정도

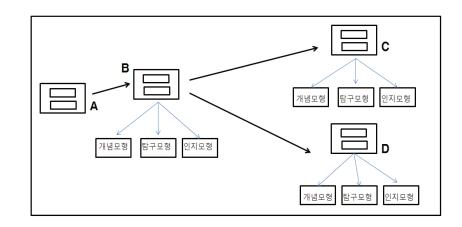

- Carroll의 학교학습이론과 Adaptive Learning
 - 학습의 정도
 - 학습정도는 도달되어야 할 목표기준에 비추어 실제로 성취한 정도
 - 어떤 학습과제를 학습하는데 필요로 하는 시간량에 대해 실제로 얼마만큼
 의 시간을 그 과제의 학습에 능동적으로 주의 집중하며, 학습에 열중하는데
 사용하느냐의 비율에 의해 결정
 - 기본 가정은 함수관계에 의해 필요한 시간을 줄이고 학습에 실제로 소요하는 시간은 늘림으로써 학습의 정도를 극대화

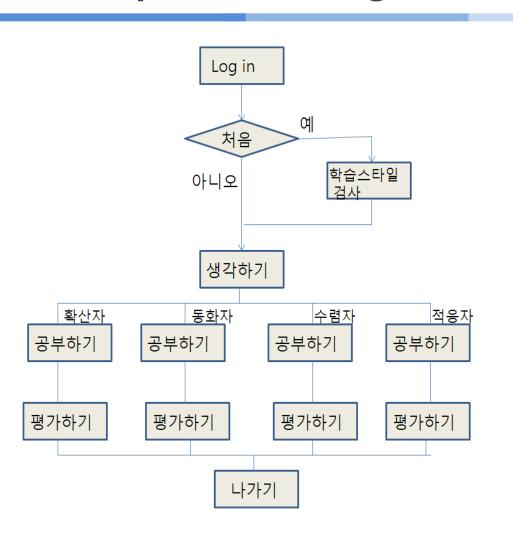
- Bruner의 나선형교육과정과 Adaptive Learning
 - 교육과정 조직의 계속성의 원리를 활용하여 같은 것을 계속적으로 단순히 반복하는 것이 아니라 점진적인 심화, 확대를 더 강화하여 반복함으로써 완전학습에 이를 수 있다는 교육과정
 - 어떤 발달단계에 있는 학생에게도, 어떤 교과든지, 그 지적 성격에 충실한 형태에 맞게 효과적으로 가르칠 수 있다고 생각. 다만, 학생의 수준에 맞는 표현양식에 따라 교수방법을 달리하면 지식의 구조를 이해시킬 수 있다고 함
 - Enactive
 - Iconic
 - Symbolic

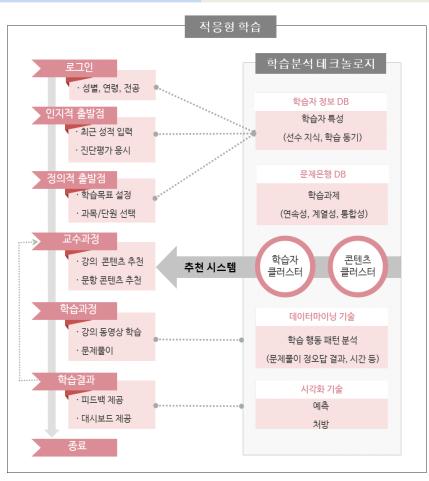

- 개별화 학습과 Adaptive Learning
 - 학습자의 강점, 필요, 다양한 차이를 존중하려는 인간중심 수업 방식
 - 기본적으로 그룹별 지도를 전제로 학습자의 다양성을 존중하는 방법
 - 대개 팀별로 수업을 하지만 필요에 따라 클래스 전체를 대상으로 하기도 함
 - vs) 개별화 맞춤지도 : 특수교육에서 사용되는 것
 - 내용, 과정, 결과물, 정서/환경의 개별화와 학습자의 준비도, 흥미, 학습이력을

고려한 수업




- small step이론과 Adaptive Learning
 - 캐롤의 학교학습모형
 - 스키너의 프로그램 학습법
 - 위의 두 이론에서 공통적으로 포함되는 원리
 - 능동적 반응 원리 : 학습자 수준에 맞게 문제 제시
 - small steps : 학습을 작은 단계로 나누어서 쉬운 것부터 어려운 것 순으로 점진적 배치
 - 즉각적 강화의 원리 : 문제 해결 후 바로 피드백 제공
 - 자기 속도의 원리 : 자신의 능력에 맞는 속도로 주어진 문제 해결하며 학습을 진행


- Adaptive Learning을 위한 온라인 학습 설계 유의점
 - 강의 내용을 20~30분 단위로 분리
 - 학습내용을 compact하게 제작
 - 분리된 학습 객체는 그 자체로 목표를 가지고 있을 것
 - 내용을 잘 배울 수 있는 학습 참여 기법 설계(예 : 퀴즈, 토론, 질의 응답)
 - 아무리 좋은 강의라도 강사의 일방적 설명이 15분을 넘지 않도록
 - 시각적 자료 활용도를 높이기
 - 슬라이드 화면에서 펜기능 활용 권장
 - 쉬는 시간을 꼭 지키기
 - 50분을 강의했다면 쉬는 시간은 15분 정도가 적당



기존 이러닝 시스템 구조

적응형 이러닝 시스템의 학습과정(이재무, 2014)

적응형 학습상황에 활용된 학습분석 테크놀로지(최민선, 정재삼, 2019)

학습주저

교육방법 및 교육공학의 이해

학습목표

- 교육공학 관련 이론들에 대한 탐색을 통해 교육공학의 개념을 명확하게 이해한다.
- 교육공학 관련 이론에 대한 이해를 바탕으로 수업 현장에서 효과적, 효율적, 매력적, 안정적인 수업을 실천할수 있다.

단계	Step1(원격수업)	step2(원격수업)	step3(대면수업)	
주요 활동	출발점 행동진단	수준별 맞춤학습 및 형성평가	수준별 심화학습 및 형성평가	학습결과 발표 및 총괄평가
학생 활동	사전(선수)학습 정도를 확인 하기 위한 진단평가 실시	수준별 학습활동 수행 학습활동 수행 후 1차 형성평가 실시	보충학습, 심화학습 진행 2차 형성평가 실시	학생 개인(수준 그룹별) 학습 결과 확인, 발표 총괄평가 실시
교수 활동	수업 오리엔테이션, 진단평가 출제, 감독, 채점 시험결과를 바탕으로 학생별 수준(그룹) 배정	5-10차시 분량의 수준별 수 업 콘텐츠 제공 형성평가 출제, 감독, 채점 시험결과를 바탕으로 구제/ 비구제 학생 판별	2차 형성평가를 바탕으로 추가보충학습, 심화학습 그 룹 배정 및 대면수업 진행	학생 수준 진단, 완전학습 실 시 여부 판정 총괄평가 실시로 재확인

교육방법 및 교육공학의 이해 진단평가 통과 보충반 기본반 Ν Ν 형성평가 형성평가 추가학습 심화반 형성평가 다음 단계 학습 안내 Ν 총괄평가

step1

원격수업

영역	학습요소	교수-학습활동		or
활동 목적			[온라인 수업도구] ➤ eclass(강의계획서, 줌) [사전준비]	
ОТ	학기안내	 교수자 : eclass 강의 계획서에 강의안 탑재 교수자 : 학기 시작하면 줌을 통해 사전 작성한 강의 계획서로 이번 학기 수업 운영 방향 설명(적응형 학습으로 진행됨을 안내) 학습자 : 교수자의 설명을 들으며 이번 학기 수업 방향 이해 	① 교수계획표 ② 학생 명렬표 [온라인 수업도구] ➤ eclass(퀴즈 및 설문)	Ð
진단	출발점 행동 진단과 판단	 교수자 : eclass 퀴즈 및 설문을 통해 진단평가지 제출 학습자 : 진단평가 응시 교수자 : 학생 진단평가 결과지 채점 	[사전준비] ① 진단평가 문항지 ② 채점기준표	山
피드 백	학생 수준에 따른 그룹 편 성	 교수자: '사용자 및 그룹'을 통해 진단평가 결과에 따라 학생 수준별 그룹 형성 학습자: 자신의 그룹 확인 	[온라인 수업도구] ➤ eclass사용(사용자그룹) [사전준비] ① 채점결과 ② 수준별 방 개설	

주요활동 : 출발점 행동진단

공지

강의계획서

문의게시판

강의콘텐츠

강의자료실

된단 클린게시판

퀴즈 및 설문

과제 및 평가

토론

성적

IIIE MA SSMix

사용자 및 그룹

종합성적부

학습설계진단

협업

출결/학습 현황

파일

Zoom

step1

원격수업

주요활동 : 출발점 행동진단

- 수업 목표 진술시 유의점
 - 학습의 내용과 학습의 행동이 동시에 진술되어야 함
 - 교육공학의 개념을(내용) + 말로 설명할 수 있다(행동)
 - 수업과정에서 의도하는 관찰 가능한 학생의 행동, 그 행동이 일어나는 조건, 과제를 달성했다고 볼 수 있는 준거가
 포함되어야 함
 - 10문제 중 9문제를 10분 이내로 풀 때(준거) + 계산기를 사용하지 않는 암산으로(조건) + 덧셈을 할 수 있다(행동)
 - 교수자가 해야 할 활동을 수업 목표로 진술하지 않음
 - '소리의 원리를 설명해준다'
 - 학습과정을 수업 목표를 진술하지 않음
 - 로마의 멸망에 관해 토론하기 내용은 있으나 수업 후에 무엇을 할 수 있어야 하는지에 대한 행동특성 없음
 - 학습내용이나 주요 제목을 수업 목표로 열거하지 않음
 - '루소의 자연주의', '커뮤니케이션 이론', '시스템 이론' 단순한 교과의 주제 나열임
 - 한 수업목표에 둘 이상의 학습결과를 포함시키지 않음
 - '낙하의 법칙을 이해하고 이를 효과적으로 적용한다.' 이해하고, 적용한다는 두 개의 학습결과가 포함됨

step1

원격수업

주요활동 : 출발점 행동진단

■ 진단평가

- 학생의 수준과 특성을 고려한 수업목표의 진술과 그에 적합한 교수학습자료의 준비를 돕는 평가
- 진단평가의 교육적 기능 : 출발점 행동의 이해와 진단
 - 지적 출발점 행동 : 지능과 언어 능력 같은 거의 모든 교과의 학습에 영향을 미치는 일반적 지적 능력, 독해력, 수리능력, 선행학습 정도
 - 정의적 출발점 행동 : 새로운 학습과제를 학습하려고 하는 시점 이전에 형성된 학생의 정의적 특성
- 학생의 진단을 위한 정보원
 - 직전학기 유사과목 성적, 진단평가지(퀴즈), 정보카드, 비형식관찰과 구두질문 등
- 진단평가 활용시 유의점
 - 학습목표와의 일치성
 - 평가결과의 적절성, 타당성, 신뢰도
 - 평가의 공정성과 효율성
 - 결과의 긍정적 활용도

step2

원격수업

주요활동 : 수준별 맞춤학습 및 형성평가

영역	학습요소	교수-학습활동	
활동 목적		Ⅱ 따른 개별화 맞춤형 수업을 통해 본시학습을 진행하기 위한 사전 준비 완전학습으로 이끌기 위하여 평가-학습-평가 의 선순환 진행	
수준 별 맞춤 학습	수준별 수업 -보충반 -기본반	 교수자 : 진단평가 결과를 바탕으로 학생 수준별 그룹방 개설 교수자 : 학생이 본시학습을 진행할 수준이 되지 않을 경우 보충학습 콘텐츠 제공(추가 2~5차시), 본시학습 진행 가능학생은 대면수업에서 심화학습을 진행하기 위한 기본학습 진행(5~10차시) 학습자 : 보충, 기본 등 자신의 수준에 맞는 학습 수강 	
1차 형성 평가	형성평가 / 순환학습	 교수자 : 보충반은 사전 보충수업을 듣고 형성평가를 실시하도록 안내, 만약 보충반 형성평가에 통과되면 기본반 수업을 듣도록 안 내 학습자 : 보충반은 보충수업을 듣고 형성평가를, 기본반은 기본수 업을 듣고 형성평가를 치름 	_
학습 결과 판별	학습결과 판 별 / 학습지속여 부판단	 교수자 : 보충반과 기본반 학생의 형성평가 결과를 바탕으로 보충 반 학생이 비구제일경우 추가 보충수업을 듣고 형성평가를 치를 과정을 반복하도록 하고, 기본반이 비구제일 경우 기본반 수업을 추가로 듣고 형성평가 실시하도록 안내 	

온라인 수업도구1

eclass(강의콘텐츠)

사전준비]

i) 보충반, 기본반 수업 콘 네츠

온라인 수업도구]

eclass(퀴즈 및 설문)

사전준비]

) 보충반, 기본반 형성평 가 문제지

온라인 수업도구]

eclass (퀴즈, 콘텐츠)

사전준비]

- 1) 추가 학습 콘텐츠
- ② 추가 형성평가 자료

홈

공지

기계회서

강의콘텐츠

강의자료실

행생생기 리게시판

과제 및 평가

토론

성적

ClassMix

사용자 및 그룹

종합성적부

학습설계진단

협업

출결/학습 현황

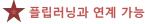
Zoom

step2

원격수업

주요활동 : 수준별 맞춤학습 및 형성평가

■ 형성평가


- 학생의 성취수준을 파악해 그 성취정도를 분명히 하고 교수학습 과정의 개선을 위한 정보로 활용하기 위한 평가
- 학습의 개선을 위한 평가
- 형성평가의 교육적 기능
 - 학습자의 장점, 단점, 현재 보완해야 할 내용, 학습결손 파악
 - 오류를 범하고 있는 원인이 무엇인지 파악해 구체적인 피드백 가능 학습 개선 가능
- 형성평가에서 피드백
- 형성평가 활용시 유의점
 - 평가결과와 성취기준의 연계
 - 학습요소별 피드백 제공
 - 평가정보와 학습전략의 연계
 - 즉각적인 피드백 제공
 - 중요한 실수에의 피드백 집중
 - 학습에 대한 학생의 노력과 열의에 주목

유형	특징
아주 미약한 피드백	단지 평가 결과만을 알려줌
미약한 피드백	평가 결과와 더불어 무엇을 틀렸고 무엇을 맞혔는지에 대한 정보를 제공함
보통 수준의 피드백	미약한 피드백에 일반적인 설명을 첨가함
약간 구체적인 피드백	보통 수준의 피드백에 성취기준과 현재 수준의 차이를 줄이 기 위한 방법을 첨가함
아주 구체적인 피드백	보통 수준의 피드백에 성취기준과 현재 수준의 차이를 줄이 기 위한 다양한 방법과 그 실천의 예를 첨가함

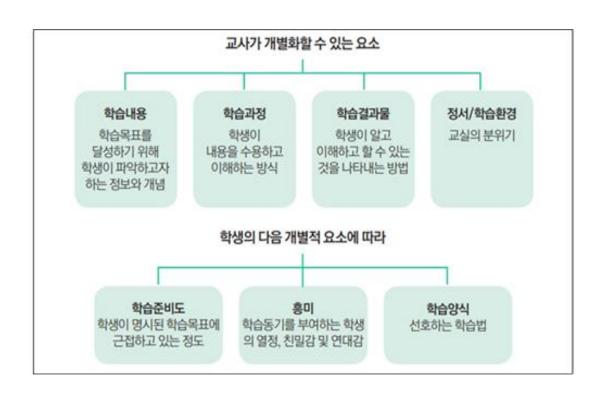
step2

원격수업

주요활동 : 수준별 맞춤학습 및 형성평가

- 수준별 수업
 - 수준별 수업이 효과를 거두려면 최소한 3개 이상의 수준으로 구분
 - 대학 수업의 경우 P/F 형태로 운영하여 사전학습이 된 학생은 기본학습으로 넘어가고 그렇지 않은 경우 보충수업 실시하는 형태도 가능
 - 수준별 집단 편성 기준 유형
 - 정기시험(사전, 중간, 기말, 직전학기 성적) 등
 - 위 정기시험+교수자의 판단
 - 정기시험+교수자의 판단+학생의 희망
 - 기본학습이 진행되고 나서 2차로 수준별 집단을 다시 구성할 수 있음
 - 진단평가 결과와 형성평가 결과를 통해 다음 학습 단계로 넘어가면서 지속적인 수준별 집단 구성이 가능
 - 중요한 것은 수업이 진행되는 단계단계 마다 학생의 성취수준을 판정하고 이에 맞는 맞춤형 학습을 제공해 주는 것이 Adaptive Learning의 관건
 - 수준별 평가 문항 예시

오. 단, 배	y=-x ² -4x-2의 그래프를 답안지 뒷면에 풀이와 함께 그리시점은 ()안의 점수와 같고, a, b, c 문항중 하나만 선택 할 수 있 과정에 따라 부분 점수가 부여됩니다.
	완전제곱식을 이용하여 $y = a(x-p)^2 + q$ 의 형태로 고치기(3점)
B형(기본 수준)	$y = a(x-p)^2 + q$ 의 형태로 고치고, 꼭지점의 좌표, 축의 방정식 까지 쓰기(4점)
C형(심화 수준)	$y=a(x-p)^2+q$ 의 형태로 고치고, 꼭지점의 좌표, 축의 방정식, y 절편까지 쓰고 그래프 그리기(5점)


step2

원격수업

★ 플립러닝과 연계 가능

주요활동: 수준별 맞춤학습 및 형성평가

■ 개별화 수업

step3

대면수업

주요활동 : 수준별 심화학습 및 형성평가

[온라인 수업도구]

[사전준비]

① 형성평가지

➤ eclass(종합성적부)

② 학생 평가 결과를 온라

인 종합성적부에 기록

-O

영역	학습요소	교수-학습활동
활동 목 적	통하여 학원	대해 모두 이해(이수)한 학생들이 강의실 대면학습에서 심화학습을 습목표 달성을 위한 실천 활동을 전개 심화학습을 통하여 다음 단계의 학습을 진행
심화 학습	대면학습에 심화학습	 교수자 : 토론, 실습, 체험 등 심화학습 진행 학습자 : 기본학습 내용을 바탕으로 대면수업에서 심화학습 수행
2차 형성 평가	형성평가 / 순환학습	 교수자 : 형성평가 문항 제작, 배포, 감독 학습자 : 심화반 수업을 수강한 후 형성평가 응시
피드 백	심화학습에 대한 피드백	 교수자 : 심화반 수업을 수강한 학생을 대상으로 심화반(토론, 실천) 등의 수업을 실시하고 심화반 내용에 따른 내용을 중심으로 2차 형성평가 실시 형성평가 통과하면 총괄평가 진행, 혹은 다음 단계 수업으로 진행 학습자 : 자신의 수준에 맞게 수업 진행

홈

공지

강의계획서

문의게시판

강의콘텐츠

강의자료실

열린게시판

퀴즈 및 설문

과제 및 평가

토론

성적

ClassMix

사용자 및 그룹

종합성적부

학습설계진단

협업

출결/학습 현황

파일

Zoom

step4

대면수업

주요활동: 학습결과 발표 및 총괄평가

[온라인 수업도구]

[사전준비]

① 총괄평가지

➤ eclass(종합성적부)

② 학생 평가 결과를 온라 인 종합성적부에 기록

-O

영역	학습요소	교수-학습활동	
활동 목 적	 이번 학기 수업 수행 결과물에 대해 발표하고 학습자의 학습도달 여부를 최종적으로 확인 학생 상호 평가를 통한 학습결과물 확인 총괄평가 실시를 통한 학점 판정(이 부분은 고민 필요) 		
학습 결과 발표	개인별 / 조별 발표	 교수자: 대면학습(강의실)에서 학생의 학기 수업 내용을 발표할 수 있는 기본 자료 제공, 발표 안내 학습자: 이번 학기 수업 진행한 내용을 중심으로 학습 결과 발표 	
(다음 수업)	다음 단계 수업 진행	• 2차 형성평가 후 다음 단계 수업 내용이 있으면 다음 단계 수업으로 진행하고 없으면 곧바로 총괄평가 실시	
총괄 평가	학생 수준에 따른 그룹 편 성	 교수자 : 총괄평가(기말고사) 실시, 지필평가 외에 각종 수행평가 실시 가능 학습자 : 총괄평가 응시 	

홈

공지

강의계획서

문의게시판

강의콘텐츠

강의자료실

열린게시판

퀴즈 및 설문

과제 및 평가

토론

성적

ClassMix

사용자 및 그룹

종합성적부

학습설계진단

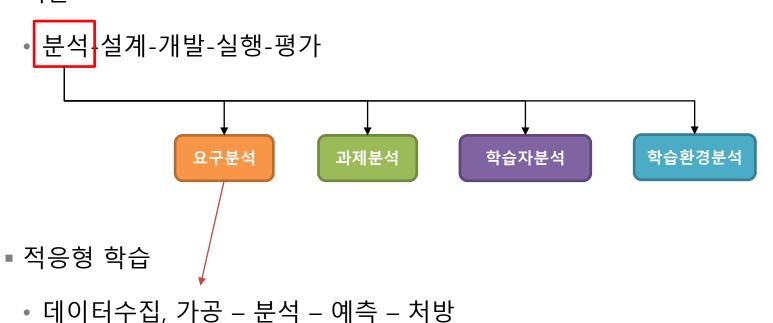
협업

출결/학습 현황

파일

Zoom

4. Blended Learning에서 Adaptive Learning을 적용하기 위한 실천 전략


- 적응형 학습 플랫폼에 활용된 학습분석 테크놀로지
 - 학습자의 로그인 정보와 개인정보 및 학습수준을 저장하는 학습자 정보 데이 터베이스
 - 학습지식 맵과 영역별, 난이도별 분류된 문항을 저장하는 문제은행 데이터베이스
 - 문항반응이론 지식을 활용하여 문제은행 데이터베이스에 저장된 문제들 중에서 특정 학습자에게 특정 문항을 선택하여 데이터베이스에 저장된 문제들 중에서 특정 학습자에게 특정 문항을 선택하여 제공하는 추천 시스템 엔진
 - 학습과정에서 발생하는 데이터를 실시간으로 수집, 분석, 처리하는 데이터마이닝 기술
 - 학습결과를 분석하여 예측과 처방을 리포팅하는 시각화 기술

4. Blended Learning에서 Adaptive Learning을 적용하기 위한 실천 전략

- 적응형 학습의 키 포인트
 - 학습자의 현재 상태를 파악할 수 있는 평가 기술
 - 평가와 관련한 빅데이터 구축 필요
 - 학생의 수준에 맞게 단계화, 맞춤화, 세분화된 학습 콘텐츠
 - 학생 수준의 등급에 따라 시간, 내용, 순서 등이 조정된 학습 콘텐츠
 - 학생 콘텐츠 제공의 즉시적, 맞춤형 제공
 - 위의 사항을 자동화된 기술로 지원할 빅데이터, 인공지능, 데이터베이스
 - 현재 수준에서 할 수 있는 방안
 - eclass를 활용한 퀴즈 제공 후 수준별 강의 콘텐츠 제공
 - Beecanvas와 같은 다양한 협업도구를 활용한 수준별 수업 활동 전개

4. Blended Learning에서 Adaptive Learning을 적용하기 위한 실천 전략

- 적응형 학습을 위한 교수설계모형
 - 기존

